
^{99m}Tc Master Milker (TcMM)

Generator of highly concentrated pure ^{99m}Tc from low specific activity ⁹⁹Mo produced by reactor and/or electron linear accelerator

Based on a newly discovered phenomenon!!
A general activated carbon has the peculiar characteristics to be able to collect ^{99m}Tc preferentially and completely from highly concentrated LSA-Mo(⁹⁹Mo) solution.

Kaken ⁹⁹Mo-⁹⁹mTc Process[@]

for Globally Local ⁹⁹Mo-^{99m}Tc production on demand by combination with TcMM and neighboring reactor or Linac

Kaken Inc., Japan

^{99m}Te Master Milker (TeMM) Generator of highly concentrated pure ^{99m}Tc from low specific activity ⁹⁹Mo produced by reactor and/or electron linear accelerator

OUTLINE

Extraction technique of ^{99m}Tc extraction from ⁹⁹Mo was examined by the newly developed Technetium Master Milker (TcMM) method. For the production of ⁹⁹Mo here, the ⁹⁸Mo(n,g) reaction using neutrons generated by a nuclear reactor and/or the ¹⁰⁰Mo(g,n) reaction using bremsstrahlung photons generated by an electron linear accelerator were utilized respectively.

By this study, it has been proved that a highly concentrated pure pertechnetate $({}^{99m}TcO_4)$ in saline can be separated and collected through the TcMM method.

Procedurally, the TcMM method utilizes combined activated carbon (AC) and alumina (AL), with or without ion exchange resin (IER). The AC-AL process has used a highly concentrated Mo with low specific and large activity ⁹⁹Mo of 3.0x10¹² Bq generated by the irradiation of neutrons in the nuclear reactor, JRR-3 in Japan Atomic Energy Agency.

It was found that a chemical yield and purity of the produced ^{99m}Tc are 90-95% and 6N (99.9999 %), respectively. Therefore, the TcMM method is able to generate a high quality ^{99m}TcO₄⁻ that is eligible to obtain the permission of pharmaceutical affairs law.

It is revealed that the TcMM method has the practical capability of the efficient ^{99m}Tc generator with a wide range from small amount level (kBq) to large level (TBq) per batch, furthermore, the main parts consisted of the AC-AL or AC-IER-AL columns system are simple and are able to collect pure ^{99m}Tc within 30 min automatically.

Conclusively, ^{99m}Tc can be produced domestically and further locally on demand by the combination of the TcMM method and ⁹⁹Mo with a low specific activity (produced from the ⁹⁸Mo(n,g) and/or ¹⁰⁰Mo(g,n) reaction, using a neighboring reactor and/or an electron linear accelerator without enriched uranium (HEU and LEU)), and furthermore, the advanced use for diagnosis can be available everywhere in the world.

[TcMM Process]

Step(1) Dissolution of irradiated ^{nat}MoO₃ pellets

Irradiated $^{nat}MoO_3$ pellets are dissolved in a molar equivalent NaOH solution, and the resulting $Na_2Mo(^{99}Mo)O_4$ solution with the neutral pH can obtain.

Step(2) Adsorption of ^{99m}Tc in AC Using the TcMM system, Na₂Mo(⁹⁹Mo)O₄ solution (max. 1000 mL) is poured into AC column at a flow velocity of 100 mL/min for 10 min. to adsorb ^{99m}Tc on the AC column. A trace amount ^{99m}Tc is preferentially and completely adsorbed in the AC column. column.

Step(3) Removal of Mo contaminants from AC Mo(99 Mo) and other nuclides contaminants in AC is removed by flowing H₂O, next 6.0 M NaOH (30 mL) and finally H₂O.

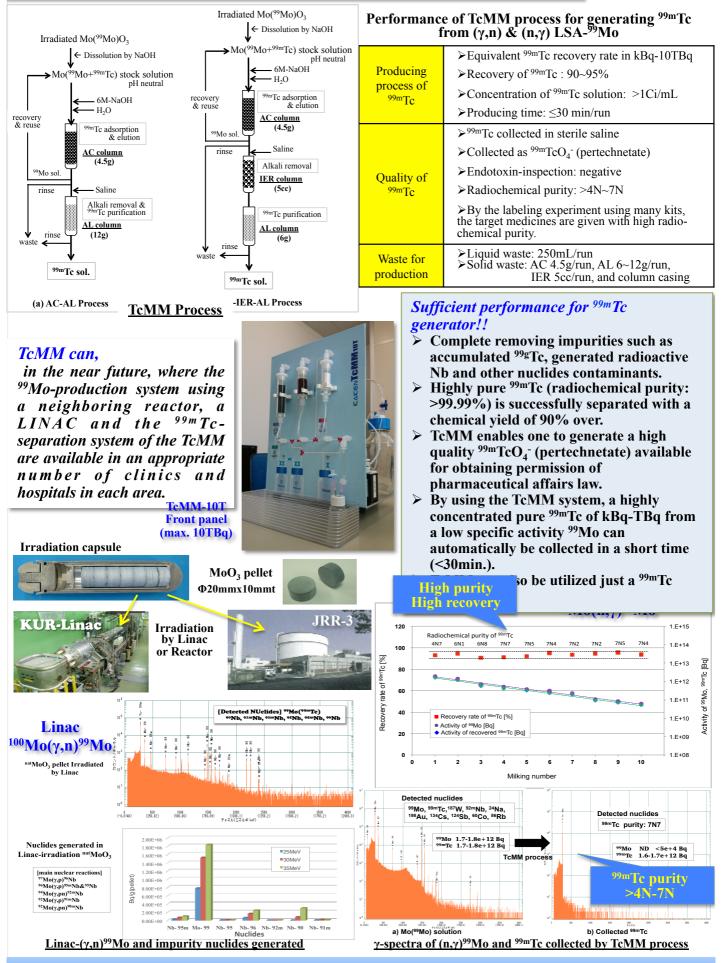
Step(4) Elution of 99m Tc from AC In order to elute 99m Tc collected into AC column, H₂O is run through the AC column, then the whole quantity of 99m Tc adsorbed on AC column can be eluted.

Step(5) Removal of Na-ion in alkaline ^{99m}Tc eluted

^{99m}Tc solution obtained in step(4) above is alkaline solution is flowed through to the strong acid type of ion exchange resin (IER) and the activated alumina (AL). By this procedure, Na-ion in eluted ^{99m}Tc solution can be taken hold in the IER column and ^{99m}Tc can be caught in the AL column. If the IER column is not used, the TcMM process can also be operated by the combination of AC-AL columns system.

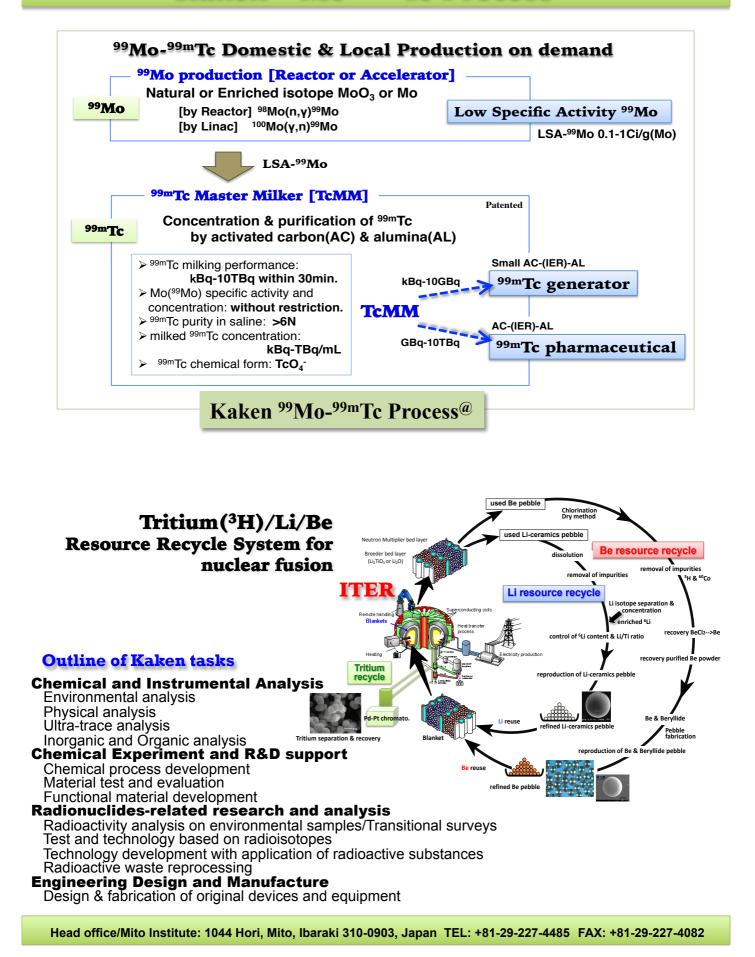
Step(6) Elution of ^{99m}Tc

Finally, a highly pure ^{99m}Tc can be recovered from the AL column by flowing 10-20 mL of saline (0.9% NaCl solution), and the resulting 99m Tc can be concentrated 50-100 folds from the initial Mo (99 Mo) solution.


Kaken Inc. URL : http://www.kakenlabo.co.jp

TcMM conditions

TcMM type (TcMM process)	TcMM 10T (AC-AL)	TcMM <ier> 10T (AC-IER-AL)</ier>
amounts of ⁹⁹ Mo	kBq-10TBq	kBq-10TBq
Mo solution	200g(Mo)/L	200g(Mo)/L
AC column	LH2c-AC 4.5g, Flow rate of Mo sol. 100mL/min 6M-NaOH 30mL ^{99m} Tc elute H ₂ O 85mL	LH2c-AC 4.5g, Flow rate of Mo sol. 100mL/min 6M-NaOH 30mL ^{99m} Tc elute H ₂ O 85mL
IER column		DIAION(SK1B H) 5cc
AL column	MP-acid AL 12g Saline 20mL	MP-acid AL 6.0g Saline <10mL
^{99m} Tc milking time	≤30min	≤30min
^{99m} Tc collected volume concentration rate radiochemical purity	20mL 50 folds >99.99%	≤10mL 100 folds or more >99.99%
wastes per batch	Liquid: 250 mL Solid: 17g	Liquid: 250 mL Solid: 16g



Contact to : tatenuma@kakenlabo.co.jp

99Mo 2016 Topical Meeting

KAKEN

Kaken ⁹⁹Mo-^{99m}Tc Process@

